A History of Mather & Platt Ltd.
CHAPTER 5 - Technical Invention and Business EnterpriseLink to full frames site if you have arrived on this single page.
Part 5 - Food Machinery

In 1930, the world wide trade depression had seriously affected British Industry and M & P had suffered with the rest. The Directors were, therefore, on the lookout for new lines to manufacture, which would help to keep the works, occupied, and bring more business to the Company.

At that time the Canning Industry in Great Britain was comparatively small and most of the equipment was being imported, largely from America. The Board of Trade were anxious to find British sources of manufacture for imported machinery, including Canning Machinery, and the few British Canners also wished to become less dependent upon imported Plant.

M & P Ltd. were approached by the Board of Trade, with the support of British Canners and, eventually, decided to go into this entirely new line of business, despite the fact that they would have to meet competition from established manufacturers from overseas. It seemed to be a sound long-term policy as the need to produce more food at home was generally recognised, and there appeared to be the beginnings of an agricultural revival. Furthermore, practically no other British firms were, at that time, making Canning Machinery and it was considered that a good start could be made with the Home Market.

The Canning Industry itself was not new. The earliest commercial experiments had taken place during the French Revolutionary Wars, about the time that the first Mather of this History settled in Salford. In 1804, Nicholas Appert invented a method of preserving food by sealing it hermetically in containers in a sterile condition and thereby won a prize of 12,000 Francs offered by Napoleon for improved methods of preserving food for the Army and Navy. However, it was an Englishman, Peter Durand, who first used tinplate steel containers for preserving food, obtaining a Patent in 1810 for a process of “preserving animal vegetable and other perishable foods by heat followed by hermetically sealing in vessels made of glass, pottery, tin or any metal or fit materials”. Some of the first metal vessels developed were known as tin cases, or canisters, and from this name the Americans have adopted the word. “Can”, and the British the word “Tin”. Tins of Australian mutton were on show at the Great Exhibition of 1851, and canned meat was used successfully for the first time by British troops in The Crimean War. The expression "Iron Rations” resulted.

However, the early development of the Canning Industry met continual checks due to an incomplete understanding of the scientific problems involved, and the lack of hygienic methods and equipment. Canned food was often regarded as being dangerous or unpleasant and the growth of the Industry was largely fostered by the demands made upon it in time of War.

Despite its early start in Europe the centre of the Canning Industry quickly moved to America, where the great variety of Fruits and Vegetables which were available, and the varied climate, lent themselves to an all-year round canning cycle.

The First World War did much to stimulate the growing Canning Industry and in the inter-war years, the civilian demand increased sharply. The wide variety and improved quality of Canned Food making it an accepted part of everyday diet, on both sides of the Atlantic, so that the worker of the 1920’s was able to have a much greater choice of food than the cotton operative of mid-Victorian Manchester. In 1924, a Special Commissioner who was sent to Canada and the United States, reported that the development of a large British industry was feasible, providing that modern machinery and methods were used.

Mather & Platt’s entry into the Food Machinery Industry, in 1930, was followed by a Canners Convention a year later, in Manchester, when the Firm was able to entertain delegates to Park Works to study the latest machines they had to offer.

The new Food Machinery Department was started first as a branch of the General Machinery or Textile Department, though it drew its small staff from both it and from the Pump Department. The start was only a small one; the new line of production was difficult to develop, particularly during those depression years, the Americans had had much experience of designing Food Machinery, particularly automatic machinery, and it was felt that if further progress was to be made, that the Company would have to work closely with an American firm of experience.

In 1932, an Agreement was made with the Food Machinery Corporation of the United States, for the manufacture of some of their standard Canning Equipment. A general Selling Company was set up outside the United States and Canada, called “Food Machinery (M & P) Ltd”, to sell both American and British made machines, as was convenient.

The new Company faced a difficult period. The expansion of the Canning Industry during the First World War had been considerable and Canners’ investments in plant had often outstripped the growth of the markets for their products. Even by 1926, when the General Trade Depression had receded, the new Company did not come up to expectations, although it had served a useful purpose in opening up fresh markets in Britain and also overseas. However, it was mutually decided to close down the sales Company, Food Machinery (M & P) Ltd although the friendly relationship between the Food Machinery Corporation and. Mather & Platt Ltd continued. Visits and ideas were exchanged and certain American Patents were retained. Nevertheless, the business continued, to expand slowly and the Department was able to justify its existence.

When the Second World War broke out, the small Food Machinery Department turned to Government Contracts, and while making a certain amount of Dehydration Plant for the Ministry of Agriculture, its productive capacity was largely devoted to War Contracts, which had no relationship to Food Machinery.

It was not until the end of the War that the demand for British Made Food Machinery really increased. The great use which was made of Canned Food by all of the conflicting Nations, stimulated the civilian demand and made the general public expect to have Canned Food as part of their daily ration. At the same time, the demand for all other products of the Firm had correspondingly increased and to relieve the congestion at Park Works, a lease was taken of the Royal Ordnance Factory at Radcliffe. The whole of the Food Machinery Department, being the smallest and most compact Department in the Firm, was moved there. This Works was suitable for light engineering, and that part of the Factory which was not required for Food Machinery became an overflow for the other departments at Park Works.

The inevitable teething troubles which followed on from a move of this sort were made worse, by the general post war conditions. Irregular, or short, deliveries of raw materials and bought out parts, wide varieties in quality, and unexpected delays or shortages, created many new problems which had to be tackled, by comparatively inexperienced workpeople and staff, many of whom had but recently returned from the War. Nevertheless, the Department set about putting its house in order with enthusiasm and in its new home, expanded rapidly. Meanwhile, by the end of the War, the various patents and manufacturing agreements with the Food Machinery Corporation and its subsidiaries had run out and consideration had to be given to future policy.

Before the War, a useful trade had been carried on in Europe. This was done partially by export, and partially by local manufacture. In France, Brittany was the main centre of vegetable and fish canning and in this area S.A. Mather & Platt had made arrangements with a local firm at Quimper, Establissements Jean Louarn, to manufacture any Food Machinery which, for various reasons could not be imported. Similarly, in Belgium, an arrangement was made with the firm of Edouard Lecluyse in Antwerp, and Food Machinery of Mather & Platt design was manufactured in both Factories for sale in Europe.

During the War, when all trade with Europe ceased, the French Company had to fall back on its own resources and in order to continue the Food Machinery business, made arrangements to finance Jean Louarn so as to expand his Works and manufacture machines which had previously been imported from England, and others which were developed in France during the course of the War. This initiative on the part of the French Staff not only kept the business alive, but resulted in a healthy expansion after the war was over.

In Belgium, during the German Occupation, matters took a different turn. A German Firm of Food Machinery Manufacturers, Karges-Hammer A.G., came to an Agreement with Edouard Lecluyse whereby they took over and expanded his business, building a new Factory which provided machinery to can German Army Rations. They acquired technical information and drawings, which had been the property of Mather & Platt Ltd and were also able to continue certain development work which was being undertaken in the Belgian Factory.

At the end of the War, this Factory was sequestrated by the Belgian Custodian of Enemy Property, and offered for sale. A series of negotiations then took place amongst interested parties, principally the Food Machinery Corporation of America, the Sobemi Company (Can Manufacturing Concern) of Belgium, and Mather & Platt Ltd. These negotiations naturally linked up with future manufacturing policy between the Food Machinery Corporation and Mather & Platt Ltd., and the renewal, or otherwise, of their association. Final proposals were that a new International Company should be formed called the “International Machinery Corporation” operating from the Lecluyse/Karges-Hammer Factory at Antwerp, and jointly owned by the interested parties. In addition, it was suggested that Mather & Platt’s Canning Department should be incorporated in the new Company and some form of rationalised production arranged between the new Antwerp Factory and the new Factory at Radcliffe.

These proposals were not acceptable to Mather & Platt Ltd, since it was felt that complete control of the Radcliffe Factory should be retained within the general framework of the Company. Accordingly, no new arrangements were made with the Food Machinery Corporation and the I.M.C. was formed, in conjunction with the Sobemi Co., and a number of leading can making companies but without Mather & Platt Ltd. This new Company, and also the Food Machinery Corporation, thus came into direct competition with the British firm.

Most of the Food Machinery Department’s early machines were of American design or based upon American designs and during the War, the Americans had done much research and development work which resulted in new and up to date models. In Great Britain, all efforts had had to be concentrated on the War, and development work on Food Machinery had not been permitted.

The end of the War, and the non-continuance of the American agreements thus threw a heavy load, on the drawing office and design staff, and much development and experimental work had to be taken on at Radcliffe, and in the expanded and jointly owned French Company at Quimper. During the next five busy years, nearly every machine was re-designed or replaced, and a number of new machines and processes were evolved. One of the most outstanding of these was the patented new Fish Canning Line developed by the French Company which, in addition to providing an improved quality, reduced the time required for extracting the organic moisture from the fish, from some twelve hours to about fifteen minutes.

Research and development work was intensified, in close co-operation, as previously, with the University of Bristol Fruit and Vegetable Preservation Research Station at Campden. One machine evolved as a direct result of this co-operation was the Stero-Washer which, working on the contraflow principle, was able to reduce the bacteriological infection of peas about eightfold.

Perhaps the most interesting and. revolutionary machine developed by the Department was the Non-Agitating Automatic Continuous Pressure Cooker. This machine was originally developed and patented in 1933, in conjunction with Campden and was designed to take advantage of the short time, high temperature cooking theory, which the Research Station had advanced. All vegetable packs are sterilised by being held at a high temperature for a given time - the higher the temperature, the shorter the time. It was found that peas which required sterilising in the ordinary retorts for 30 minutes at 2400F in the new Cooker only required 11 minutes at 260 0F. This shorter time not only produced a better looking and more economical pack, but also resulted in a higher nutritive value. Continual advances were made in the design of these Cookers and by 1951 they were capable of running continuously at speeds of 200 cans per minute and more, and even handling aluminium cans. These machines being about the only satisfactory non-agitating automatic Pressure Cookers found a wide market both at home and overseas.

The range of Food Machinery manufactured by Mather & Platt Ltd, included not only machines for Canning, but also machines for general food purposes such as Root Vegetable and other Washers, Food Pumps, Grain Dryers and Glass Jar Dryers, Peelers for all types of fruit and vegetables, Graders by size, weight or specific gravity, many forms of Cutters, Choppers, Dicers and Slicers, Filling and Inspection Tables and Conveyers which handle a great variety of items.

The M & P designed Pea Viner, embodying several new features, and having a higher throughput than competitive models, found ready markets, several hundreds being sold at home and overseas.

A Mather & Platt Canning Line is fully automatic, and processing times and temperatures can be controlled by the operation of instruments alone. A good example is the Pea Line. The Pea Vine is reaped in the field and loaded automatically onto a Trailer. It is then tipped alongside the Viner into which it is fed. with pitch forks. The shelled peas are delivered from one side of the Viner at the rate of about 30 cwts per hour and the waste vine is carried away on a Conveyor to be made into silage. The peas are then elevated into the Winnower, which cleans them, gravitate through a Washer and are pumped to the Grader and again to the next process of Blanching. Here the intercellular gases are driven out, surface infections are removed and the peas are thoroughly cleaned. They are then cooled and washed again, passing over a Picking Table where they are visually inspected for the removal of sub-standard peas. They are then washed again, pass through a machine to remove splits and skins, elevated to a Hopper, from which they gravitate to the Filler and then into the can together with a measured quantity of brine. The filled cans then pass through an Exhauster system which, by heating the can and its contents, drives off the air and ensures a good vacuum in the can after the next process of seaming on the lids. The closed cans then travel through an automatic Pressure Cooker and Cooler from where they roll away to be labelled and cased, or stored. Similar lines are made for handling other Vegetables, Fruits and Fish while specialised machines can be incorporated in the Lines to adapt them for Soup, Milk or Meat.

Throughout the whole of this process, no part of the pea or pea vine need be touched by hand, and the peas are usually in labelled cans, graded according to size, and cooked within four hours of the pea vine being reaped. An automatic line of this description can handle two hundred cans a minute with very little labour, and under complete and automatic process control. This chain of processes would amaze a housewife, and surprise an early pioneer like Appert. It is an excellent example of a revolution in the consumer industry, which has revealed yet again the close connection between technical invention and business enterprise.